Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob
نویسندگان
چکیده
Xylitol production was compared in fed batch fermentation by Saccharomyces cerevisiae strains overexpressing xylose reductase (XR) genes from Candida tropicalis, Pichia stipitis, Neurospora crassa, and an endogenous gene GRE3. The gene encoding a xylose specific transporter (SUT1) from P. stipitis was cloned to improve xylose transport and fed batch fermentation was used with glucose as a cosubstrate to regenerate NADPH. Xylitol yield was near theoretical for all the strains in fed batch fermentation. The highest volumetric (0.28 gL-1 h-1) and specific (34 mgg-1 h-1) xylitol productivities were obtained by the strain overexpressing GRE3 gene, while the control strain showed 7.2 mgg-1 h-1 specific productivity. The recombinant strains carrying XR from C. tropicalis, P. stipitis, and N. crassa produced xylitol with lower specific productivity of 14.3, 6.8, and 6.3 mgg-1 h-1, respectively, than GRE3 overexpressing strain. The glucose fed as cosubstrate was converted to biomass and ethanol, while xylose was only converted to xylitol. The efficiency of ethanol production was in the range of 38-45 % of the theoretical maximum for all the strains. Xylitol production from the non-detoxified corncob hemicellulosic hydrolysate by recombinant S. cerevisiae was reported for the first time. Xylitol productivity was found to be equivalent in the synthetic xylose as well as hemicellulosic hydrolysate-based media showing no inhibition on the S. cerevisiae due to the inhibitors present in the hydrolysate. A systematic evaluation of heterologous XRs and endogenous GRE3 genes was performed, and the strain overexpressing the endogenous GRE3 gene showed the best xylitol productivity.
منابع مشابه
Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob
BACKGROUND For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work ...
متن کاملConstruction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate
High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) ge...
متن کاملEvaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.
In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface method...
متن کاملEvaluation of Nutrient Supplementation to Charcoal- Treated and Untreated Rice Straw Hydrolysate for Xylitol Production by Candida guilliermondii
Xylitol was produced by Candida guilliermondii from charcoal-treated and untreated rice straw hemicellulosic hydrolysate with or without nutrients (ammonium sulphate, calcium chloride, rice bran extract). Both, xylitol yield and volumetric productivity decreased significantly when the nutrients were added to treated and untreated hydrolysates. In the treated hydrolysate, the efficiency of xylos...
متن کاملDetoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis
Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was ...
متن کامل